Нейронные сети STATISTICA Neural Networks: Методология и технологии современного анализа данных. III. Обзор использования пакета statistica Neural Networks Лабораторная работа statistica neural networks

Для создания набора обучающих данных используется встроенный редактор данных (File/New/Data Set ) либо загружается файл данных *.sta с диска. В случае создания файла в Microsoft Excel *.csv необходимо провести конвертирование формата данных в формат *.sta (операция проводится автоматически при открытии файла данных).

После открытия данных ST Neural Networks предложит функцию автоматического построения (окно Intelligent Problem Solver ). На данном этапе необходимо отказаться от данной функции (Cancel ).

При открытии нового файла в ST Neural Networks все переменные считаются входными. Необходимо указать выходные переменные. Щелкните правой кнопкой мыши в поле с названием выходных переменных в окне Data Set Editor , в появившемся контекстном меню выберите Output, цвет заголовка столбца изменится на голубой.

Все наблюдения необходимо поделить на два множества: обучающее (служит для обучения НС) и контрольное (необходимо для оценки хода обучения).

Во втором поле Cases окна Data Set Editor укажите размер контрольного множества (обычно на него отводится половина всего набора данных), нажмите Enter. Строки, содержащие контрольные наблюдения, отмечены красным цветом (находятся в конце списка наблюдений). Затем, командой перемешать (Shuffle) (Edit → Cases → Shuffle →Train and Verify ), все наблюдения случайным образом распределяются по различным типам.

Для создания сети используется пункт меню File → New → Network . При этом появляется окно редактора сети (рисунок 11).

Сеть с заданными параметрами и структурой создается после нажатия кнопки Create.

Параметры Steps и Lookahead используются только в задачах временных рядов и в данной работе не используются.

Обучение сети.

Для сетей каждого типа используются специальные алгоритмы обучения, которые находятся в пункте меню Train . При выборе алгоритма предлагается определить параметры обучения. Например, при обучении многослойного персептрона методом обратного распространения (Train → Multilayer Perceptrons → Back Propagation) задаются в соответствующем окне (рисунок 12).

Рисунок 12 – Окно редактора параметров обучения

Epochs - Эпохи. Задает число циклов обучения, которые проходятся при одном нажатии клавиши Train. Значение по умолчанию 100.

Learning rate - Скорость обучения, задает величину шага при изменении весов: при недостаточной скорости алгоритм медленно сходится, при увеличении скорости обучения алгоритм работает быстрее, но в некоторых задачах это может привести к неустойчивости (особенно если данные зашумлены). Для быстрого и грубого обучения подойдут значения от 0,1 до 0,6; для достижения точной сходимости требуются меньшие значения (например, 0,01 или даже 0,001, если эпох много тысяч). Иногда полезно уменьшать скорость в процессе обучения.

Momentum - Инерция. Этот параметр улучшает (ускоряет) обучение в ситуациях, когда ошибка мало меняется, а также придает алгоритму дополнительную устойчивость, помогает алгоритму не застревать в низинах и локальных минимумах. Значение этого параметра всегда должно лежать в интервале . Часто рекомендуется использовать высокую скорость обучения в сочетании с небольшим коэффициентом инерции и наоборот.

Shuffle Cases - Перемешивать наблюдения. При использовании этой функции порядок, в котором наблюдения подаются на вход сети, меняется в каждой новой итерации. Это добавляет в обучение некоторый шум, так что ошибка может испытывать небольшие колебания. Однако при этом меньше вероятность того, что алгоритм «застрянет», и общие показатели его работы обычно улучшаются.

Cross-verification (кросс-проверка) - Стандартный способ обучения нейронных сетей заключается в том, что сеть обучается на одном из множеств, а на другом проверяется результат; таким образом, контрольное множество для обучения не используется. Это дает независимый способ проверки того, научилась ли сеть чему-нибудь полезному.

Reinitialize - сброс настраиваемых параметров сети, полученных на предыдущем цикле обучения, или для предыдущей сети.

Запуск алгоритма обучения производится нажатием кнопки Train . Каждый раз при нажатии кнопки Train алгоритм совершает N циклов обучения, где N – количество циклов обучения, определяемое в Epochs.

На графике (Statistics → Training Error Graph ) можно наблюдать изменение ошибки сети в ходе обучения. Training Error Graph– это отображение среднеквадратичной ошибки выхода на всем обучающем множестве.

На графике можно наблюдать нежелательный эффект переобучения (когда сеть хорошо учится выдавать те же выходные значения, что и в обучающем множестве, но оказывается неспособной обобщить закономерность на новые данные). Поначалу и ошибка обучения, и контрольная ошибка убывают. С началом переобучения ошибка обучения продолжает убывать, а ошибка контроля (обычно красного цвета) начинает расти. Рост проверочной ошибки сигнализирует о начале переобучения и свидетельствует о том, что алгоритм обучения начинает быть деструктивным (и одновременно о том, что более подходящей может оказаться сеть меньшего размера).

При изменении параметров сети перед обучением необходимо сбросить весовые коэффициенты (настроенные параметры) предыдущей сети. Для MLP–сети кнопкой Reinitialize.

В пакете STATISTICA Neural Networks предусмотрено автоматическое запоминание лучшей сети во время эксперимента. Для восстановления значений наилучшей сети вызовите меню Train→ Auxiliary→ Best Network .

Для просмотра результатов обучения сети используется функция Options в окне Network Set Editor , в появившемся окне нужно нажать Add (добавить). При этом в окне Network Set Editor добавится информационная строка для сети: тип сети, среднеквадратичная ошибка сети (RMS error), количество входов сети, число скрытых элементов в сети, коэффициент регрессии, использованные методы обучения (если в списке Detail shown выбрано Verbose- подробный).

Для расчета данных с помощью сети используется пункт меню Run: Data Set – расчет для всех данных исходного файла;

Single Case – расчет одного наблюдений;

One-off – расчет для произвольного входного вектора.

Расчет производится при нажатии кнопки Run соответствующего окна.

Запускается, как и в предыдущем случае, но в таблицах выводится только фактическое выходное значение.

Откройте меню Run →One-off , введите входные значения, для которых необходимо спрогнозировать выходное, нажмите Run .

Просмотр весовых коэффициентов синаптических связей нейронов возможен в окне Network Editor (рисунок 13) (Edit→Network… ). Значение Theshold – пороговое значение, которое вычитается от входного значения нейрона. Значение VAR1 (на рисунке 13) – весовой коэффициент связи.

Номер слоя задается в поле Layer. В данном окне можно просмотреть (задать) функцию активации нейрона каждого слоя (поле Act fn).


Рисунок 13 – Окна просмотра параметров обученной сети

Просмотр выходных значений нейронов в слое в окне Network Activations (Run → Activations … ). Расчет для строки данных (указана в поле Case No ) по нажатию кнопки Run.

В пакете STATISTICA Neural Networks предусмотрена возможность автоматического определения структуры лучшей сети для набора обучающих данных (функция доступна через File→New→Intelleigent Problem Solver ).

Алгоритм работы сети в пакете STATISTICA Neural Networks .

1 Нормализация входных данных:

,

где - коэффициент нормализации; , максимальное и минимальное значения j- й переменной обучающей выборки; i – номер строки обучающей выборки.

Примечание - Для просмотра и анализа данных обучающей выборки удобно использовать функцию Edit → Cases → Shuffle →Group Sets.

2 Распределение входного вектора на следующий слой с соответствующим весовым коэффициентом (см. Edit→Network… ).

3 Вычитание порогового значения на каждом нейроне (см. Edit→Network… поле Theshold ).

4 Вычисление функции активации нейрона (результат см. Run → Activations … ).

5 Повтор шагов для всех слоев сети.

6 Вычисление выхода сети с учетом коэффициента нормализации:

, где - минимальное значение выходной переменной обучающей выборки, t – номер выходной переменной, - коэффициент нормализации выходной переменой t , - нормализованное значение выхода сети, рассчитанное для последнего слоя.

Контрольные вопросы

1 Что такое нейронная сеть и каковы ее основные свойства?

2 Какова структура нейрона?

3 Какие функции активации могут быть использованы в нейронных сетях?

4 Какие требования предъявляются к функциям активации?

5 Какие функции выполняет входной слой в многослойной сети?

6 Можно ли обучить нейронную сеть без скрытого слоя?

7 В чем заключается обучение нейронных сетей?

8 Почему один из алгоритмов обучения получил название «алгоритм обратного распространения»?

9 Чем отличается обучение с учителем от обучения без учителя?

10 Почему входные и выходные сигналы нейронной сети должны быть нормированы, т.е. приведены к диапазону ?

Список литературы

1 Fogelman Soulie F. Neural networks, state of the art, neural computing. -London: IBC Technical Services, 1991.

2 Горбань А. Нейроинформатика и ее приложения // Открытые системы. -1998. -№ 4 – 5. -С. 36 - 41.

3 Роберт Хехт-Нильсен. Нейрокомпьютинг: история, состояние, перспективы // Открытые системы. -1998. -№ 4-5. -С. 23 - 28.

4 Розенблатт Ф. Принципы нейродинамики. Персептроны и теория механизмов мозга. -М.: Мир, 1965.

5 Гордиенко Е.К., Лукьяница А.А. Искусственные нейронные сети. I Основные определения и модели// Изв. РАН. Техническая кибернетика. -1994. -№ 5. -С. 79 - 92.

6 Короткий С.Г. Нейронные сети: алгоритм обратного распространения. -BYTE/Россия. -2000. -№ 5. -С. 26-29.

7 Свешников С.В., Шквар А.М. Нейротехнические системы обработки информации. -Киев: Наукова думка, 1983. -222 с.

8 Интеллектуальные системы управления с использованием нейронных сетей: учеб. пособие. / В.И. Васильев, Б.Г. Ильясов, С.С. Валеев и др.; Уфимск. гос. авиац. техн. ун-т. Уфа, 1997. -92 с.

9 Куликов Г.Г., Брейкин Т.В., Арьков В.Ю. Интеллектуальные информационные системы: учеб. пособие / Уфимск. гос. авиац. техн. ун-т. -Уфа, 1999. -129 с.

10 Короткий С.Г. Нейронные сети: основные положения // BYTE/Россия. -2000. -№ 5. -С. 18-21.

11 Интеллектуальные системы обработки информации на основе нейросетевых технологий: учеб. пособие. / Ю.И. Зозуля, Уфимск. гос. авиац. техн. ун-т. –Уфа. -2000. -138 с.

Аннотация: Нейронные сети и статистика. Нейронные сети и нечеткая логика. Нейронные сети и экспертные системы. Нейронные сети и статистическая физика.

Животные делятся на:

  1. принадлежащих Императору,
  2. набальзамированных,
  3. прирученных,
  4. сосунков,
  5. сирен,
  6. сказочных,
  7. отдельных собак,
  8. включенных в эту классификацию,
  9. бегающих, как сумасшедшие,
  10. бесчисленных,
  11. нарисованных тончайшей кистью из верблюжьей шерсти,
  12. прочих,
  13. разбивших цветочную вазу,
  14. издали напоминающих мух.

Х.Л.Борхес, "Аналитический язык Джона Уилкинса"

Нейрокомпьютинг имеет многочисленные точки соприкосновения с другими дисциплинами и их методами. В частности, теория нейронных сетей использует аппарат статистической механики и теории оптимизации. Области приложения нейрокомпьютинга подчас сильно пересекаются или почти совпадают со сферами применения математической статистики, теории нечетких множеств и экспертных систем. Связи и параллели нейрокомпьютинга чрезвычайно многообразны и свидетельствуют о его универсальности. В данной лекции, которую можно рассматривать как дополнительную, так как она требует несколько большей математической подготовки, мы поговорим только о наиболее важных из них.

Нейронные сети и статистика

Поскольку в настоящее время нейронные сети с успехом используются для анализа данных, уместно сопоставить их со старыми хорошо разработанными статистическими методами. В литературе по статистике иногда можно встретить утверждение, что наиболее часто применяемые нейросетевые подходы являются ни чем иным, как неэффективными регрессионными и дискриминантными моделями. Мы уже отмечали прежде, что многослойные нейронные сети действительно могут решать задачи типа регрессии и классификации. Однако, во-первых, обработка данных нейронными сетями носит значительно более многообразный характер - вспомним, например, активную классификацию сетями Хопфилда или карты признаков Кохонена, не имеющие статистических аналогов. Во-вторых, многие исследования, касающиеся применения нейросетей в финансах и бизнесе, выявили их преимущества перед ранее разработанными статистическими методами. Рассмотрим подробнее результаты сравнения методов нейросетей и математической статистики.

Являются ли нейронные сети языком описания?

Как уже отмечалось, некоторые статистики утверждают, что нейросетевые подходы к обработке данных являются просто заново переоткрытыми и переформулированными, но хорошо известными статистическими методами анализа. Иными словами, нейрокомпьютинг просто пользуется новым языком для описания старого знания. В качестве примера приведем цитату из Уоррена Сэрла:

Многие исследователи нейронных сетей являются инженерами, физиками, нейрофизиологами, психологами или специалистами по компьютерам, которые мало знают о статистике и нелинейной оптимизации. Исследователи нейронных сетей постоянно переоткрывают методы, которые известны в математической и статистической литературе десятилетиями и столетиями, но часто оказываются неспособными понять как работают эти методы

Подобная точка зрения, на первый взгляд, может показаться обоснованной. Формализм нейронных сетей действительно способен претендовать на роль универсального языка. Не случайно уже в пионерской работе МакКаллока и Питтса было показано, что нейросетевое описание эквивалентно описанию логики высказываний.

Я в действительности обнаружил, что с помощью техники, которую я разработал в работе1961 года (…), я мог бы легко ответить на все вопросы, которые мне задают специалисты по мозгу (...) или компьютерщики. Как физик, однако, я хорошо знал, что теория, которая объясняет все, на самом деле не объясняет ничего: в лучшем случае она является языком. Эдуардо Каянелло

Не удивительно поэтому, что статистики часто обнаруживают, что привычные им понятия имеют свои аналоги в теории нейронных сетей. Уоррен Сэрл составил небольшой словарик терминов, использующихся в этих двух областях.

Таблица 11.1. Словарь аналогичных терминов
Нейронные сети Статистические методы.
Признаки переменные
входы независимые переменные
выходы предсказанные значения
целевые значения зависимые переменные
ошибка невязка
обучение, адаптация, самоорганизация оценка
функция ошибки, функция Ляпунова критерий оценки
обучающие образы (пары) наблюдения
параметры сети: веса, пороги. Оценочные параметры
нейроны высокого порядка взаимодействия
функциональные связи трансформации
обучение с учителем или гетероассоциация регрессия и дискриминантный анализ
обучение без учителя или автоассоциация сжатие данных
соревновательное обучение, адаптивная векторная квантизация кластерный анализ
обобщение интерполяция и экстраполяция
В чем различие нейронных сетей и статистики?

В чем же заключается сходство и различие языков нейрокомпьютинга и статистики в анализе данных. Рассмотрим простейший пример.

Предположим, что мы провели наблюдения и экспериментально измерили N пар точек, представляющих функциональную зависимость . Если попытаться провести через эти точки наилучшую прямую, что на языке статистики будет означать использование для описания неизвестной зависимости линейной модели , (где обозначает шум при проведении наблюдения), то решение соответствующей проблемы линейной регрессии сведется к нахождению оценочных значений параметров , минимизирующих сумму квадратичных невязок.

Если параметры и найдены, то можно оценить значение y для любого значения x, то есть осуществить интерполяцию и экстраполяцию данных.

Та же самая задача может быть решена с использованием однослойной сети с единственным входным и единственным линейным выходным нейроном. Вес связи a и порог b могут быть получены путем минимизации той же величины невязки (которая в данном случае будет называться среднеквадратичной ошибкой) в ходе обучения сети, например методом backpropagation. Свойство нейронной сети к обобщению будет при этом использоваться для предсказания выходной величины по значению входа.


Рис. 11.1.

При сравнении этих двух подходов сразу бросается в глаза то, что при описании своих методов статистика апеллирует к формулам и уравнениям, а нейрокомпьютинг к графическому описанию нейронных архитектур.

Если вспомнить, что с формулами и уравнениями оперирует левое полушарие, а с графическими образами правое, то можно понять, что в сопоставлении со статистикой вновь проявляется "правополушарность" нейросетевого подхода.

Еще одним существенным различием является то, что для методов статистики не имеет значения, каким образом будет минимизироваться невязка - в любом случае модель остается той же самой, в то время как для нейрокомпьютинга главную роль играет именно метод обучения. Иными словами, в отличие от нейросетевого подхода, оценка параметров модели для статистических методов не зависит от метода минимизации . В то же время статистики будут рассматривать изменения вида невязки, скажем на

Как фундаментальное изменение модели.

В отличие от нейросетевого подхода, в котором основное время забирает обучение сетей, при статистическом подходе это время тратится на тщательный анализ задачи. При этом опыт статистиков используется для выбора модели на основе анализа данных и информации, специфичной для данной области. Использование нейронных сетей - этих универсальных аппроксиматоров - обычно проводится без использования априорных знаний, хотя в ряде случаев оно весьма полезно. Например, для рассматриваемой линейной модели использование именно среднеквадратичной ошибки ведет к получению оптимальной оценки ее параметров, когда величина шума имеет нормальное распределение с одинаковой дисперсией для всех обучающих пар. В то же время если известно, что эти дисперсии различны, то использование взвешенной функции ошибки

Может дать значительно лучшие значения параметров.

Помимо рассмотренной простейшей модели можно привести примеры других в некотором смысле эквивалентных моделей статистики и нейросетевых парадигм

Сеть Хопфилда имеет очевидную связь с кластеризацией данных и их факторным анализом.

Факторный анализ используется для изучения структуры данных. Основной его посылкой является предположение о существовании таких признаков - факторов, которые невозможно наблюдать непосредственно, но можно оценить по нескольким наблюдаемым первичным признакам. Так, например, такие признаки, как объем производства и стоимость основных фондов, могут определять такой фактор, как масштаб производства. В отличие от нейронных сетей, требующих обучения, факторный анализ может работать лишь с определенным числом наблюдений. Хотя в принципе число таких наблюдений должно лишь на единицу превосходить число переменных рекомендуется использовать хотя бы втрое большее число значение. Это все равно считается меньшим, чем объем обучающей выборки для нейронной сети. Поэтому статистики указывают на преимущество факторного анализа, заключающееся в использовании меньшего числа данных и, следовательно, приводящего к более быстрой генерации модели. Кроме того, это означает, что реализация методов факторного анализа требует менее мощных вычислительных средств. Другим преимуществом факторного анализа считается то, что он является методом типа white-box, т.е. полностью открыт и понятен - пользователь может легко осознавать, почему модель дает тот или иной результат. Связь факторного анализа с моделью Хопфилда можно увидеть, вспомнив векторы минимального базиса для набора наблюдений (образов памяти - см. Лекцию 5). Именно эти векторы являются аналогами факторов, объединяющих различные компоненты векторов памяти - первичные признаки.

ЗНАКОМСТВО С СОВРЕМЕННЫМ НЕЙРОСЕТЕВЫМ

Лабораторная работа № 1

ПРОГРАММНЫМ ПРОДУКТОМ STATISTICA NEURAL NETWORKS (SNN) ВЕРСИИ «SNN 7.0»

Цель работы – познакомиться с программным продуктом Statistica

Neural Networks (SNN), построить нейронную сеть с помощью мастера решений.

1. Открыть файл данных Вентилятор.stw (табл.П.1) с помощью команды Файл Открыть . В этом файле находятся данные о двух типах классах – 1 и 2, наличие и отсутствие перегрева.

2. Выбрать команду Нейронные сети в меню Анализ для вызова стартовой панели STATISTICA Нейронные сети.

Рис. 4. Выбор инструмента

3. На вкладке Быстрый стартовой панели Нейронные сети выбрать из списка тип задачи (в данном случае – Классификация ) и метод решения (в данном случае – Мастеррешений ) и нажать кнопку OK (рис. 4). После этого будет отображен стандартный диалог выбора переменных.

4. Выбрать зависимую (выходную) переменную (в данном случае – переменная КЛАСС) (рис. 5).

Рис. 5. Входные данные

5. Для отображения Мастера решений нажать кнопку OK на стартовой панели.

На вкладке Быстрый (рис. 6) отменить выбор опции Выбрать подмножество независимых переменных , здесь определены только две независимые переменные, таким образом, обе переменные будут использоваться в качестве входов для всех проверяемых нейронных сетей. В группе Длительность анализа находятся опции, определяющие время, которое Мастер решений потратит на поиск эффективной нейронной сети. Чем дольше Мастер решений будет работать, тем эффективней будет найденное решение. Например, установить 25 сетей.

По результату проведенного анализа можно сохранить нейронные сети различных типов с различными показателями производительности и сложности для того, чтобы можно было в итоге выбрать наилучшую сеть самостоятельно.

6. Ввести число 10 для сохранения сетей, чтобы Мастер решений сохранил только 10 наилучших вариантов сетей.

Вкладка Мастер решений Быстрый будет иметь вид, отображенный на рис. 6.

Рис. 6. Настройки для проведения анализа

Нажать кнопку OK , чтобы Мастер решений начал построение

нейронных сетей. После этого будет отображен диалог Идет обучение (Мастер решений ). Каждый раз при обнаружении улучшенной нейронной сети будет добавлена новая строка в информационную таблицу. Кроме этого, в нижней части окна отображается время работы и процент выполненного задания. Если на протяжении длительного времени не произошло никаких улучшений, то нажать кнопку Готово в диалоге Идет обучение , чтобы завершить процесс поиска сетей. После окончания поиска будет отображен диалог Результаты , содержащий информацию о найденных сетях для дальнейшего анализа (рис. 7).



Рис. 7. Результаты обучения

7. Нажать кнопку Описательные стат . на вкладке Быстрый в диалоге Результаты , чтобы отобразить две итоговые таблицы: Классификация и Матрица ошибок.

В таблице классификаций (рис. 8) представлена полная информация о решении соответствующей задачи. В этой таблице для каждого выходного класса, предсказанной каждой моделью, существует несколько столбцов. Например, столбец, обозначенный КЛАСС.1.11, соответствует предсказаниям модели 1 в классе ПЕРЕГРЕВА для переменной КЛАСС . В первой строке приводится информация о количестве наблюдений различных типов перегревов в файле данных. Во второй (третьей) строке отображаются данные (для каждого класса) о количестве правильно (неправильно) классифицированных наблюдений. В четвертой строке приводятся «неизвестные» наблюдения. Матрица ошибок обычно используется в задачах с несколькими вы-

ходными классами.

8. Для отображения итоговой статистики необходимо открыть Анализ (кнопка Результаты в строке Анализа или команда Продолжить в меню Анализ ). В группе Выборки для вывода результатов выбрать опцию Все (отдельно). Затем нажать кнопку Описательные статистики . Итоговая таблица классификаций разделена на четыре части. Заголовки столбцов имеют различные префиксы: О, К, Т и И , которые соответствуют обучающей, контрольной, тестовой и игнорируемой выборкам соответственно. По умолчанию, наблюдения разделены на три подмножества в отношении 2:1:1. Таким образом, выделено 50 обучающих наблюдений, 25 контрольных наблюдений и 25 проверочных наблюдений. Результаты работы нейронной сети на этих множествах практически совпадают, то есть качество нейронной сети можно считать приемлемым.

Рис. 8. Таблица классификаций

9. Для завершения Анализа нажать кнопку OK в диалоге Результаты . На стартовой панели при нажатии на кнопку Отмена все построенные нейронные сети будут удалены. Сохранять нейронные сети необходимо для того, чтобы быстрее провести обучение нейронных сетей, соответственно перед этим найти сеть с наилучшей производительностью, и далее построенные нейронные сети сохраняются для дальнейшего использования. Для сохранения нейронной сети выбрать вкладку Сети/Ансамбли и нажать кнопку Сохранить файл сети как... . (файл имеет расширение.snn).

Задания

1. Построить и обучить нейронную сеть с помощью Мастера решений для автоматизации диагностики автомобиля, определяющей необходимость капитального ремонта двигателя на основе следующих параметров: компрессия двигателя, давление масла, расход бензина.

2. Ввести исходные данные в соответствии с табл. 1, конкретные значения переменных получить у преподавателя.

3. Построить нейронную сеть в соответствии с настройками:

Тип задачи: классификация;

Инструмент: мастер решений;

Количество сетей: 25;

5. Сделать анализ построения нейронной сети и отразить в отчете.

6. Оформить отчет о выполненной работе.

Под редакцией В.П. Боровикова

2-е изд., перераб. и доп.

2008 г.

Тираж 1000 экз.

Формат 70x100/16 (170x240 мм)

Исполнение: в мягкой обложке

ISBN 978-5-9912-0015-8

ББК 32.973

УДК 004.8.032.26

Аннотация

Изложены нейросетевые методы анализа данных, основанные на использовании пакета STATISTICA Neural Networks (фирма производитель StatSoft), полностью адаптированного для русского пользователя. Даны основы теории нейронных сетей; большое внимание уделено решению практических задач, всесторонне рассмотрена методология и технология проведения исследований с помощью пакета STATISTICA Neural Networks – мощного инструмента анализа и прогнозирования данных, имеющего широкие применения в бизнесе, промышленности, управлении, финансах. Книга содержит множество примеров анализа данных, практические рекомендации по проведению анализа, прогнозирования, классификации, распознавания образов, управления производственными процессами с помощью нейронных сетей.

Для широкого круга читателей, занимающихся исследованиями в банковской сфере, промышленности, экономике, бизнесе, геологоразведке, управлении, транспорте и других областях.

Предисловие ко второму изданию

Введение. Приглашение в нейронные сети

Глава 1. ОСНОВНЫЕ ПОНЯТИЯ АНАЛИЗА ДАННЫХ

Глава 2. ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙ

Глава 3. ВВЕДЕНИЕ В ТЕОРИЮ НЕЙРОННЫХ СЕТЕЙ

Глава 4. ОБЩИЙ ОБЗОР НЕЙРОННЫХ СЕТЕЙ
Параллели из биологии
Базовая искусственная модель
Применение нейронных сетей
Пре- и постпроцессирование
Многослойный персептрон
Радиальная базисная функция
Вероятностная нейронная сеть
Обобщенно-регрессионная нейронная сеть
Линейная сеть
Сеть Кохонена
Задачи классификации
Задачи регрессии
Прогнозирование временных рядов
Отбор переменных и понижение размерности

Глава 5. ПЕРВЫЕ ШАГИ В STATISTICA NEURAL NETWORKS
Начинаем работу
Создание набора данных
Создание новой сети
Создание набора данных и сети
Обучение сети
Запуск нейронной сети
Проведение классификации

Глава 6. ДАЛЬНЕЙШИЕ ВОЗМОЖНОСТИ НЕЙРОННЫХ СЕТЕЙ
Классический пример: Ирисы Фишера
Обучение с кросс-проверкой
Условия остановки
Решение задач регрессии
Радиальные базисные функции
Линейные модели
Сети Кохонена
Вероятностные и обощенно-регрессионные сети
Конструктор сетей
Генетический алгоритм отбора входных данных
Временные ряды

Глава 7. ПРАКТИЧЕСКИЕ СОВЕТЫ ПО РЕШЕНИЮ ЗАДАЧ
Представление данных
Выделение полезных входных переменных.
Понижение размерности
Выбор архитектуры сети
Пользовательские архитектуры сетей
Временные ряды

Глава 8. ПРИМЕРЫ ПРИМЕНЕНИЯ (CASE STUDIES)
Пример 1. Понижение размернотси в геологическом исследование
Пример 2. Распознование образов
Пример 3. Нелинейная классификация двумерных множеств
Пример 4. Сегментация различных образцов топлива по данным лабораторного исследования
Пример 5. Построение модели поведенческого скоринга
Пример 6. Аппроксимация функций
Пример 7. Прогнозирование продаж нефти
Пример 8. Мониторинг и предсказание
температурного режима на установке
Пример 9. Определение достоверности цифровой подписи

Глава 9. КРАТКОЕ РУКОВОДСТВО
Данные
Сети
Обучение сетей
Другие типы сетей
Работа с сетью
Пересылка результатов в систему STATISTICA

Глава 10. КЛАССИЧЕСКИЕ МЕТОДЫ, АЛЬТЕРНАТИВНЫЕ НЕЙРОННЫМ СЕТЯМ
Классический дискриминаннтный анализ в STATISTICA
Классификация
Логит-регрессия
Факторный анализ в STATISTICA

Глава 11. ДОБЫЧА ДАННЫХ В STATISTICA

Приложение 1. Генератор кода

Приложение 2. Интеграция STATISTICA с ERP-системами

Список литературы

Предметный указатель

В пакете STATISTICA задача непрерывного прогнозирования представляется как задача регрессии. В контексте этой задачи нейронная сеть рассматривается как нелинейная функция, сложность которой контролируется "полупараметрически" - число элементов в сети влияет на сложность решения, но, конечно, аналитик не может видеть явный вид регрессионной функции.

Требуется построить нейронную сеть, вычисляющую выброс свинца в атмосферу в зависимости от количества и вида проезжающего транспорта. Данные хранятся в файле Свинец.xls.

Откройте файл Свинец.xls в пакете Statistica. Появится окно «Открытие файла».

Рис. 4. 33. Окно импорта.

Необходимо выбрать опцию «Импортировать выбранный лист» и выбрать название листа с данными:

Рис. 4. 34. Выбор листа Excel для импорта в пакет Statistica.

В следующем окне необходимо указать реальные параметры данных, которые, как правило, определяются и отображаются автоматически (кроме трех последних чекбоксов).

Рис. 4. 35. Задание области импорта.

После этого импортированные данные отобразятся в окне.

Рис. 4. 36. Результаты импорта.

Запустите пакет анализа при помощи нейронных сетей. Для этого выберите в меню «Анализ» пункт «Нейронные сети».

Рис. 4. 37. Выбор способа обработки данных – «нейронная сеть».

после чего появится окно пакета STATISTICA Neural Networks:

Рис. 4. 38. Стартовое окно анализа «нейронные сети».

Перейдите на вкладку «Быстрый», где необходимо задать тип задачи- Регрессия, и инструмент- Конструктор сетей.

Рис. 4. 39. Запуск конструктора нейросетей.

Далее, нажав кнопку «ОК», вы перейдете в режим выбора выходных (зависимых) и входных (независимых) переменных. В качестве первой выбираем «Свинец», а в качестве последних – количество автомобилей всех категорий. Столбцы «№» и «Улицы» остаются неиспользуемыми.

Рис. 4. 40. Выбор входных и выходных данных для нейросети.

Нажав «Ок» вы снова вернетесь на вкладку «Быстрый». Затем, снова нажав кнопку «Ок», вы переместитесь в окно формирования нейросети. На вкладке «Быстрый» необходимо выбрать тип сети- многослойный персептрон,

Рис. 4. 41. Выбор типа нейросети.

а на вкладке «Элементы» можно указать необходимое количество слоев, количество нейронов в каждом, а также вид функции активации:

Рис. 4. 42. Задание количества слоев и типов нейронов.

Рис. 4. 43. Выбор способа обучения нейосети.

Здесь, нажав на кнопку «Выборки», можно задать количество обучающих, контрольных и тестовых примеров. Если задать число тестовых и контрольных примеров равными нулю, то сеть будет обучаться по всем примерам:

Рис. 4. 44. Определение данных для обучения и тестирования.

Вернувшись в главное окно обучения, можно, нажав на кнопку «Пользователя» и перейдя к вкладке «Интерактивный», потребовать, что бы процесс обучения отражался в виде графика:

Рис. 4. 45. Задание вида графика для демонстрации процесса обучения.

Наконец, нажав на кнопку «Ок», вы запустите процесс обучения, результат которого отобразится на графике:

Рис. 4. 46. Обучение нейросети.

Нажав на кнопку «Ок», вы перейдете к окну результатов, где можете изучать различные характеристики созданной сети, перемещаясь по вкладкам окна:

Рис. 4. 47. Результаты моделирования нейросети.

Так, например, на вкладке «Дополнительно» существует кнопка «Архитектура сети», нажав на которую можно увидеть топологию построенной сети:

Рис. 4. 48. Вид построенной нейросети.

а также кнопка «Наблюдения пользователя», где можно задать сети новые исходные данные и получить ответ уже обученной сети.

error: Content is protected !!